
AFRL-HE-AZ-TP-2007-0001 
 
 

Knowledge Tracing and Prediction of 
Future Trainee Performance 

 
 

Tiffany S. Jastrzembski (1) 
Kevin A. Gluck (2) 

Glenn Gunzelmann (2) 
 

Air Force Research Laboratory 
Mesa Research Site 
6030 South Kent St. 

Mesa, AZ  85212 
 

 
 
 
 

June 2006 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

Air Force Research Laboratory 
Human Effectiveness Directorate 
Warfighter Readiness Research Division 

 
Approved for public release; 

distribution is unlimited. 



 
                                                  

 NOTICES 
 
This paper is published in the interest of scientific and technical information exchange and its publication 
does not constitute the Government’s approval or disapproval of its idea or findings. 
 
When US Government drawings, specifications, or other data are used for any purpose other than a 
definitely related Government procurement operation, the Government thereby incurs no  responsibility nor 
any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any 
way supplied the said drawings, specifications, or other data, is not to be regarded by implication or 
otherwise, as in any manner, licensing the holder or any other person or corporation, or conveying any 
rights or permission to manufacture, use or sell any patented invention that may in any way be related 
thereto. 
 
This paper has been reviewed by Public Affairs and is suitable for public release. 
 
Direct requests for copies of this report to: http://stinet.dtic.mil  
 
This technical paper has been reviewed and is approved for publication. 
 
 
 
//signed//     //signed// 
Kevin A. Gluck    HERBERT H. BELL 
Project Scientist    Technical Advisor 
 
 
 
//signed// 
DANIEL R.  WALKER, Colonel, USAF 
Chief, Warfighter Readiness Research Division 
Air Force Research Laboratory 



3  

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 
06-12-2006 

2. REPORT TYPE 
Conference Proceedings 

3. DATES COVERED (From - To) 
 
5a. CONTRACT NUMBER 
 
5b. GRANT NUMBER 
 

4. TITLE AND SUBTITLE 
Knowledge Tracing and Prediction of Future Trainee Performance 

5c. PROGRAM ELEMENT NUMBER 
 
5d. PROJECT NUMBER 
2313 
5e. TASK NUMBER 
HA 

6. AUTHOR(S) 
Tiffany S. Jastrzembski 
Kevin A. Gluck 
Glenn Gunzelmann 

5f. WORK UNIT NUMBER 
09 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT   
    NUMBER 

Air Force Research Laboratory 
Warfighter Readiness Research 
Division (AFRL/HEAT) 
Human Effectiveness Directorate 
 

  
 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 
AFRL; AFRL/HEA 

11. SPONSOR/MONITOR’S REPORT  
      NUMBER(S) 

Air Force Research Laboratory 
Human Effectiveness Directorate 
Warfighter Readiness Research Division 
6030 South Kent Street 
Mesa AZ  85212-6061 

      

AFRL-HE-AZ-TP-2007-0001 
12. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for public release; distribution is unlimited.  Approval number: AFRL-WS-06-2750. 

13. SUPPLEMENTARY NOTES 
This paper was presented at I/ITSEC 2006, and appears in the I/ITSEC Proceedings:  Jastrzembski, T. S., 
Gluck, K. A., & Gunzelmann, G. (2006). Knowledge tracing and prediction of future trainee performance. 
In Proceedings of the 2006 Interservice/Industry Training, Simulation, and Education Conference (pp. 
1498-1508). Orlando, FL: National Training Systems Association. 
14. ABSTRACT 
Intelligent tutoring systems seek to optimize instruction and training by adapting and individualizing the learning experience on the basis of a student 
model (Shute, 1995). This model represents the system’s estimate of the student’s current knowledge or skill level, established from a performance history. 
Knowledge tracing (Aleven & Koedinger, 2002; Anderson, Conrad, & Corbett, 1989) is a dynamic, Bayesian approach to updating the estimates of 
probability of skill mastery in the student model. A fundamental shortcoming of this approach is that it does not include a representation of memory decay 
during periods of non-practice. As a result, traditional student modeling approaches are unable to make predictions regarding knowledge and skill changes 
under various future training schedules or to prescribe how much training will be required to achieve specific levels of readiness at a specific future time. 
In this paper, we propose a new knowledge tracing equation, computationally inspired by the learning and forgetting equations in the ACT-R cognitive 
architecture (Anderson et al., 2004), which uses performance history to baseline student model parameters and then extrapolates knowledge state 
transformation to predict future performance. We explore practical issues concerning predictive models of future trainee performance and the prescription 
of frequency and timing of optimal learning with training systems. For instance, we investigate how much data from the training history are necessary to 
achieve reasonable predictive validity, and we describe the impact of data granularity through a quantitative assessment of how adequately the model can 
fit and predict human performance curves across aggregate-level, team-level, and individual-level resolutions. The paper ends with a discussion of the 
implications of this research for the future of training and education. 

15. SUBJECT TERMS 
Skill learning; retention; Intelligent tutoring; Mathematical modeling; Spacing effect; Distributed practice 
16. SECURITY CLASSIFICATION OF:  17. LIMITATION  

OF ABSTRACT 
18. NUMBER 
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON 
Kevin A. Gluck 

a. REPORT 
UNCLASSIFIED 

b. ABSTRACT 
UNCLASSIFIED 

c. THIS PAGE 
UNCLASSIFIED 

 
UNLIMITED 
 

 
11 

19b. TELEPHONE NUMBER (include area 
code) 
480-988-6561, x677 

 Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39.18 



4  

 

 
 
 
 
 
 
 
 
 
  



 
 
 
 

(2006). In the Proceedings of the Interservice/Industry Training, Simulation, and Education Conference (pp. 1498-1508). Orlando, FL: National Training Systems Association. 

Knowledge Tracing and Prediction of Future Trainee Performance 
 

Tiffany S. Jastrzembski Kevin A. Gluck, Glenn Gunzelmann
Florida State University Air Force Research Laboratory

Tallahassee, Florida Mesa, AZ 
jastrzembski@psy.fsu.edu kevin.gluck@mesa.afmc.af.mil, 

 glenn.gunzelmann@mesa.afmc.af.mil
 

ABSTRACT 
 
Intelligent tutoring systems seek to optimize instruction and training by adapting and individualizing the learning 
experience on the basis of a student model (Shute, 1995). This model represents the system’s estimate of the 
student’s current knowledge or skill level, established from a performance history. Knowledge tracing (Aleven & 
Koedinger, 2002; Anderson, Conrad, & Corbett, 1989) is a dynamic, Bayesian approach to updating the estimates of 
probability of skill mastery in the student model. A fundamental shortcoming of this approach is that it does not 
include a representation of memory decay during periods of non-practice. As a result, traditional student modeling 
approaches are unable to make predictions regarding knowledge and skill changes under various future training 
schedules or to prescribe how much training will be required to achieve specific levels of readiness at a specific 
future time. In this paper, we propose a new knowledge tracing equation, computationally inspired by the learning 
and forgetting equations in the ACT-R cognitive architecture (Anderson et al., 2004), which uses performance 
history to baseline student model parameters and then extrapolates knowledge state transformation to predict future 
performance. We explore practical issues concerning predictive models of future trainee performance and the 
prescription of frequency and timing of optimal learning with training systems. For instance, we investigate how 
much data from the training history are necessary to achieve reasonable predictive validity, and we describe the 
impact of data granularity through a quantitative assessment of how adequately the model can fit and predict human 
performance curves across aggregate-level, team-level, and individual-level resolutions. The paper ends with a 
discussion of the implications of this research for the future of training and education. 
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INTRODUCTION 
 
Intelligent tutoring systems are intended to optimize 
learning by adapting training experiences on the basis 
of proficiency. These systems continuously estimate 
trainees’ current knowledge and skill levels based on 
performance history and build what has been termed a 
representation of the student (Hartley & Sleeman, 
1973) or student model (Greer & McCalla, 1993; Shute 
& Psotka, 1996; VanLehn, 1988). They dynamically 
update estimates of the knowledge state in the student 
model as the learner accumulates more experience and 
expertise, and then adapt training to improve the 
efficiency and effectiveness of learning opportunities. 
 
Among the most demonstrably successful intelligent 
tutoring systems ever created are the Cognitive 
Tutors® that originated at Carnegie Mellon as testbeds 
for the ACT* theory of skill acquisition (Anderson, 
1983). Their implementation was inspired by ACT-
style cognitive models of algebra and geometry 
problem solving, with skills decomposed into 
production rules. The tutors proved so effective that a 
successful spinoff company, Carnegie Learning, 
eventually formed to mature and distribute the 
technology to school districts around the country. The 
tutors are now being used by more than 800 schools. 
 
The student modeling capability in the Cognitive 
Tutors® is a Bayesian estimate of the probability of 
having mastered each of the knowledge units 
(production rules) that are targets of current 
instruction. Their Bayesian equation is used in a 
process called knowledge tracing (Corbett & 
Anderson, 1995) to keep this mastery estimate current 
and provide a basis on which to determine the course 
of instruction. This approach has been quite successful 
in classroom applications. (Aleven & Koedinger, 2002; 
Anderson, Conrad, & Corbett, 1989). 
 
Notwithstanding the documented utility of the 
knowledge tracing approach, it does have a critical 
limitation, as does every other known  student 
modeling approach. The limitation is that intelligent 
tutors have no underlying mechanism for memory 

decay represented in the model. Thus, even over 
significant periods of non-practice, when some 
forgetting would inevitably occur, the student model 
assumes that the learner’s knowledge state remains 
stable across periods of non-use, leaving all prior 
learning completely intact. This limits the utility of 
traditional student modeling approaches entirely to 
estimates of current readiness/proficiency/mastery. 
They have no capacity to predict what future readiness 
will be at specific points in time. 
 
Furthermore, traditional student modeling approaches 
are unable to make predictions regarding knowledge 
and skill changes under various future training 
schedules or to prescribe how much training will be 
required to achieve specific levels of readiness at a 
specific future time. They function only on the 
learner’s last computed knowledge state, and provide 
training for only the current benchmark task needed to 
be learned.  
 
The goal of the current work is to further translate 
basic cognitive science research into an effective 
“cognitive tool” (Koedinger & Anderson, 1993) for 
future warfighter training applications. We will do this 
through the creation of a mathematical model that 
integrates mechanisms that handle the spacing effect 
(distributed learning) into a computational cognitive 
process model of memory. Benefits associated with 
computationally representing the spacing effect include 
validating existing or proposed theoretical assumptions 
of learning and decay of memory traces over time, 
providing warfighters and instructors with a tool to 
predict performance given a known regimen of 
training, and helping warfighters and instructors 
prescribe practice schedules to optimize performance 
based upon mathematical regularities in training 
histories.  
 
We propose a new knowledge tracing equation, 
inspired largely by the learning and forgetting 
equations in the ACT-R cognitive architecture 
(Anderson et al., 2004). This equation allows us to 
calibrate student model parameters from performance 
history and extrapolate knowledge state transformation 
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to predict future performance. We first begin with an 
explanation of the spacing effect dilemma, then turn to 
the evolution of computational models to formally 
trace the intricacies of knowledge and skill acquisition 
in human memory. Finally, we address the potential 
contributions of a predictive and prescriptive cognitive 
model for improving military readiness. 
 

SPACING EFFECT 
 

One of the most consistent findings from past research 
in human memory is that performance is generally 
enhanced when learning repetitions are spaced farther 
apart temporally. This phenomenon, often termed the 
spacing effect, is extremely robust and has been 
observed not only in artificial laboratory settings, but 
in real-life training situations as well (e.g. Bahrick & 
Phelps, 1987). Due to its ubiquity, it may be inferred 
that basic principles of learning and retrieval are 
involved.  
 
On the learning side of the coin, practice that occurs 
more slowly becomes more durable (e.g. Pavlik & 
Anderson, 2005); and on the forgetting side of the 
coin, the rate of forgetting of an item decreases as time 
passes according to Jost’s Law.  This Law states that 
“if two associations are now of equal strengths but of 
different ages, the older one will lose strength more 
slowly with the further passage of time” (Woodworth, 
1938).   
 
This phenomenon is not captured by most existing 
models of human memory, which generally assume 
that memory traces additively strengthen with each 
learning opportunity and continually decay with the 
passage of time. Thus, computational models fall apart 
under distributed training conditions and it becomes 
evident that modifications to current implementations 
of computational models of memory need to be made 
to account for differences in learning and decay as a 
function of repetition timing. 

 
COGNITIVE MODELS  

 
Computational cognitive process models have been in 
existence a mere fraction of the hundred and twenty 
years of accrued research in human learning and 
forgetting of knowledge and skill (Ebbinghaus, 1885).  
Despite their infancy, such models have capitalized on 
theoretical and empirical understandings to inform the 
mathematical implementation of cognitive mechanisms 
and processes responsible for performance. Significant 
strides have been made in accounting for increasingly 
complex memory phenomena through the years (e.g. 
Anderson, 1992; Anderson & Lebiere, 1998; 

Anderson, Fincham, & Douglass, 1999; Pavlik & 
Anderson, 2005).  However, much work remains to be 
done to completely capture the nuances of the dynamic 
human memory system. As it currently stands, even the 
best models in existence capture learning and 
forgetting curves only in a post-hoc manner, 
adequately simulate curves only when the grain of 
resolution is large enough to diminish inherent noise 
and variation and typically account for performance 
curves averaged over many participants rather than 
tracing the knowledge state of an individual learner.  
 
ACT-R General Performance Equation 
 
Anderson and Schunn (2000) proposed the General 
Performance Equation, which provides the basis for 
our predictive and prescriptive mathematical model. It 
is derived from ACT-R equations and comprises the 
power law of practice, the power law of forgetting, and 
the multiplicative effect of practice and retention (the 
relation between the amount of practice and the 
duration of time for which knowledge must be 
maintained). A form of neural adaptation called long-
term potentiation also shows the power laws of 
learning and forgetting (Barnes, 1979), which nicely 
aligns the cognitive mechanisms of the model with 
neurophysiological research.  
 
The General Performance Equation is formally 
expressed as (see Equation 1): 
 
     (1) 
 
where A is a free parameter scalar, N is the amount of 
practice, c is the rate of learning, T is the time since 
learning, and d represents memory decay. The 
collective effect of this algorithm is that performance 
continues to improve with increased learning 
opportunities, and continues to degrade as time 
between learning and retention increases. Preservation 
of knowledge then depends upon leveraging the 
amount of practice against the retention time. 
 
To emphasize the reasons for utilizing these core 
components in our proposed modified equation, we 
first demonstrate the model’s strengths. This ACT-R-
based General Performance Equation can replicate the 
findings from a variety of learning and forgetting 
studies in the published literature. These include 
studies concerning knowledge retention, knowledge 
acquisition, skill retention, and skill acquisition. We 
provide a sample of these model fits in Figure 1 for 
knowledge acquisition, and Figure 2 for skill retention.  
    
Anderson and Fincham (1994) required participants to 
first memorize a number of logic-based facts.  These 
facts related time between series of events, and 

dc TNA −⋅⋅
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participants were asked to predict when one event 
would occur, given the knowledge of when a second 
event occurred.  Participants were tested over the 
course of four days. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:  Model fit to knowledge acquisition 
(Anderson & Fincham, 1994)  
 
Bean (1912) taught novice participants typewriting 
skills and was interested in examining how well those 
new skills were retained as a function of time.  
Participants were initially tested on days one, four, and 
seven and were then tested weekly for four additional 
weeks, and tested a final time 35 days after initial 
learning. 
 
 
 
 
 
 
 
 
 
 
 
          
 

Figure 2:  Model fit to skill retention (Bean, 1912) 
         

These figures demonstrate the usefulness of the 
General Performance Equation for many types of data 
sets and provide correlation coefficients of 0.89 to 0.97 
for fits to empirical human performance. We now turn 
to a dimension of learning and forgetting that this 
equation does not handle well, namely, distributed 
learning or spaced practice. 
 
Mathematical Weaknesses of the General 
Performance Equation for Handling the Spacing 
Effect  Human performance studies have revealed that 
learning and forgetting do not linearly improve or 
degrade over extended periods of time, but rather they 
approach asymptote. For example, an item presented at 

longer intervals of time will be retained better than an 
item crammed more tightly together in temporal space. 
The practice function in its current form would assume 
a discrete increment in learning or activation to be 
added at each presentation time of the item and would 
necessitate a greater decay rate to be incorporated for 
an item presented across greater intervals of time. 
Thus, the General Performance Equation would model 
superior performance for massed study compared to 
distributed study, resulting in a converse effect to that 
of actual human performance. As demonstrated in 
Figure 3, the model clearly loses its ability to fit human 
performance data when distributed training regimens 
are a part of the procedure, and correlations plummet 
to 0.49.  Further, these estimations of fit can only be 
made in a post-hoc manner. 
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Figure 3:  General Performance Equation Model 
fits to data spaced at practice intervals of every 2 
and every 8 trials (Glenberg, 1976) 
 
 
PROPOSED PREDICTIVE AND PRESCRIPTIVE 

MODEL 
 
Algorithm Parameters 
 
Building upon the strengths of the previous equations, 
we sought to formalize an algorithm to capture 
recency, frequency, and spacing effects, while also 
providing flexibility and capability for predicting 
performance at later points in time. This equation is 
formalized by the following, and incorporates the same 
definitions for parameters N and c as originally defined 
by Equation 1 (see Equation 2): 
 
     (2) 
 
where S equals the original scalar (A) in the General 
Performance Equation) multiplied by training history 
(known improvement rate between initial time of 
learning and last known retention session), and a 
equals an activation-based decay parameter that 
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enfolds an exponential function into the decay rate (see 
Equation 3), such that: 
 
              (3) 
 
To further elaborate the activation-based decay 
parameter a, m equals the activation level at the latest 
known data point, defined by ln(T-d), so that this 
parameter is calculated from the known training history 
and is based upon the original decay rate and activation 
level at the last known point.   
 
Ability to Account for Spacing Effect   
 
In order to demonstrate the efficacy of our Predictive 
and Prescriptive Model in comparison to the General 
Performance Equation, we plotted our model fit to the 
same data set. Figure 4 reveals correlations of 0.96 
between our model and the data, showing a marked 
improvement over the General Performance Equation 
(r = 0.49).  
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Figure 4:  Predictive Performance Equation Model 
fits to data spaced at practice intervals of every 2 
and every 8 trials (Glenberg, 1976) 
 
As we have demonstrated the model’s ability to capture 
recency, frequency, and spacing effects of human 
memory, we next turn to address its predictive 
capability utilizing data collected by the Cognitive 
Engineering Research Institute (CERI) investigating 
team training and performance. 
 

PREDICTIVE MODEL FITS TO TESTBED 
DATA 

 
CERI studied human performance in an Uninhabited 
Air Vehicle (UAV) synthetic reconnaissance task 
environment, and the data proved to be ideal for 
examining the accuracy of our model’s predictions. In 
addition, the study design allowed us to investigate 
model fits at various levels of data resolution, meaning 
we were able to examine model predictions at the 

aggregate, team level, and individual team member 
level of performance.  
 
To provide some background regarding CERI’s study 
design, individual teams were composed of three 
members randomly assigned to positions (a mission 
coordinator/route planner, an air vehicle operator 
(AVO) responsible for piloting the aircraft, and a 
payload operator (PLO) to operate the camera and take 
pictures of required targets), and each team member 
was assigned certain unique duties that provided access 
to different pieces of information (e.g. the mission 
coordinator knew the location of targets and airfield 
restrictions, the altitude/speed technician knew the 
optimal parameters for reconnaissance photos, and the 
photographer knew when target reconnaissance was 
complete so that the aircraft could move onto its next 
target). Teams were required to work cooperatively so 
that mission-critical information could be passed along 
to the appropriate team member to ensure success.  
 
Participants completed five, 40-minute missions on the 
first day of training and returned 10-14 weeks later to 
complete three final missions. Outcome measures were 
based upon weighted penalty scores across team 
members, amassed across all occurrences of team 
members acting outside duty restrictions or failing to 
relay mission-critical information to the appropriate 
team member. This training scenario will be utilized as 
the model’s baseline of training history for both 
predictive and prescriptive scenarios described below. 
 
Predictive Restrictions of Computational Models 
 
As predictive capability of any model is affected by the 
level of noise in the data set, performance trends, and 
ultimately mathematical regularities, may be difficult 
to extract if the amount of noise is too high. The model 
may therefore function according to an inadequate, 
baseline training history, and may make increasingly 
poor predictions for future performance as the level of 
noise rises.  
 
This issue was important to understand as we sought to 
investigate model fits across finer and finer grains of 
data analysis. Decomposing the data from the 
aggregate level downward inherently confounds the 
identification of true, stable memory gains and losses 
in performance history (Estes, 2002), since outlier 
trials, participants, or extraneous error are less likely to 
be reduced through averaging into the overall trends.  
 
Nonetheless, these examinations will help serve some 
very practical purposes. They will reveal how much 
data, at a minimum, is necessary to make valid 

)()1( interceptdeda m +⋅= −

R = .96 
RMSD = 1.47% 
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predictions for individuals or teams performing a given 
task. These analyses may provide specific 
recommendations concerning the minimal amount of 
training history (e.g. training logs) required to make 
probabilistically valid predictions for future 
performance. This is particularly critical in a military 
domain, where warfighter knowledge and skills must 
be stable and sufficient to succeed in any future 
maneuver or mission. First, we lay out basic tenets 
pertaining to this potential obstacle.  
 
Resolution of Data  Aggregate level data, by 
definition, reduces noise through averaging procedures 
that smooth out the shape of human performance 
curves. This process can be thought of as a double-
edged sword. As a benefit, averaging helps reduce the 
contribution of noise to true human learning patterns. 
However, as a drawback, it is entirely possible that true 
human learning trends become masked or distorted as a 
result of the process (Estes, 2002). The magnitude of 
distortion could be caused by the amount of noise in 
the data, variability of parameter fits to individual trials 
or participants, and the range of variables of interest.  
 
It may also be the case that producing an average 
group curve does not adequately represent the 
individuals it comprises, and further, the average group 
curve may not adequately predict individual 
performance. Chong and Wray (2005) provide 
evidence that the appearance of data at the aggregate 
level can be vastly different and even entirely distinct 
from curves using finer grains of analysis, so it is clear 
that these issues are not at all trivial at a practical level 
of utility.  
 
An extensive literature review by Newell and 
Rosenbloom (1981) revealed that mathematically, 
learning trajectories of practice and retention at the 
aggregate level are generally best fit to power 
functions. Of interest is that learning trajectories at the 
individual level of performance are generally best fit to 
exponential functions (Heathcote, Brown, & Mewhort, 
2000). This of course poses serious concerns for 
modeling purposes, as computational algorithms will 
always be best suited for data sets that have eliminated 
sources of spurious noise.  
 
In order to make valid predictions or prescriptions of 
training regimen for individual warfighters, these 
tenets imply that it would behoove instructors to 
collect an adequate supply of data pertaining to 
training history, as data become more predictable when 
greater amounts of training history are initially utilized 
to baseline performance trajectories. This 

recommendation will become evident in the following 
sections.  
 
Model Fits to Aggregate Level Data  Using the CERI 
laboratory data, we initially tested model predictions at 
the aggregate level of performance, collapsing data 
across all individual team members and across all 
teams. In this evaluation scenario, we first optimized 
model parameters using performance history from the 
first day of testing. This required determining the 
values of learning and forgetting rates that best fit the 
performance function up to the end of day one training. 
As described above, the first day of testing required the 
completion of five, 40-minute reconnaissance 
missions, and is represented in Figure 5 as missions 
one through five.  
 
After a 10-14 week delay, participants returned for a 
second session and engaged in missions six through 
eight. It is for these missions that we extrapolated 
mathematical regularities from known performance 
history to make our model predictions and compare 
against actual human performance. A correlation 
coefficient of 0.95 between the model and the humans 
was revealed, and is shown in Figure 5. 
  

 
  
 
 
 
 
 
 
 
 
 
 
Figure 5:  Predictive Performance Equation Model 
fit to aggregate level data after a 10-14 week delay 
 
Model Fit to Individual Team Level Data  Using the 
same procedure of optimization and extrapolation 
described above, we tested the efficacy of our model to 
make predictions at a finer grain of analysis, that being 
an individual team selected randomly from the sample. 
A correlation coefficient of 0.91 was revealed, 
producing the hypothesized reduction in predictive 
validity compared to the aggregate level, as shown in 
Figure 6.  
 

10-14 week delay 

R = .95 
RMSD = 10.3 
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Figure 6:  Predictive Performance Equation Model 
fit to team level data after a 10-14 week delay 
 
Model Fit to Individual Operator Level Data 
Decomposing data down to the lowest grain of analysis 
in this data set, that of a randomly selected individual 
operator, further reduces the ability of the model to 
make accurate predictions. Increased noise in the data 
drops the correlation coefficient between the model 
and the human to 0.68, as shown in Figure 7. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7:  Predictive Performance Equation Model 
fit to individual operator level data after a 10-14 
week delay 
 
It is evident that performance curves at the individual 
team member, individual team, and overall aggregate 
levels can be very different and distinct from one 
another. Figure 8 illustrates this difference by 
presenting the randomly selected team and individual 
team member used in the model predictions, and 
compares them to the aggregate level performance 
curve.  
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Figure 8:  Comparison of true human performance 
curves at different levels of data resolution 
 
This exercise also reveals how much poorer the 
prediction becomes when finer grains of analysis are 
used. More and more noise and error are introduced 
into the data when averaging procedures are removed; 
therefore, model predictions lose their mathematical 
base and fail in predictions of future performance. One 
useful way to combat this problem with finer grains of 
analysis would be to gather more information in 
training history, so that missions may be averaged 
across blocks for example, and noise and error would 
be systematically smoothed out. 
 
Amount of Training History  Another factor that 
affects model fits and future predictions is the amount 
of training history from which mathematical 
regularities are initially extracted. As such, we again 
used the CERI laboratory testbed data to examine 
model predictions dependent upon the amount of 
training history provided. For the previous predictions 
displayed at the aggregate, team level, and individual 
team member level performance, we optimized model 
parameters based on training from the first five 
missions (or session one of testing) to make predictions 
for the last three missions (or session two of testing, 
10-14 weeks later). For this exercise, we compared 
model predictions as a function of the amount of 
training history at the aggregate level. We optimized 
model parameters from performance gleaned from one 
to seven known data points, and made predictions for 
the remainder of training. Not surprisingly, greater 
amounts of training history led to greater predictability 
in the data, and model efficacy rapidly increased with 
just four known points in training history.  The 
correlation coefficients are displayed in Figure 9. 
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Figure 9:  Predictive Model correlations to human 
performance data as a function of known training 
history 
 
Clearly, this exercise of model predictability across 
varying amounts of performance history reveals the 
importance of collecting adequate amounts of 
performance data from the start. Stable learning 
trajectories allow the extraction of mathematical 
regularities to be implemented in a computational 
model, so that even at finer grains of analysis, the 
model may be useful in a predictive capacity. 
 
Potential Predictive Utility in the Warfighter 
Domain 
 
Of critical importance to the military and to individual 
warfighters themselves, is knowing when they have 
received enough training to be able to perform with 
consistency and to achieve success in specific missions 
or maneuvers at future points in time. Our predictive 
model has the potential to predict when a warfighter 
will achieve mission-readiness under very specific 
regimens of practice, with very specific distributions of 
practice. Take for example the following scenario: 
How long will it take an individual warfighter, using 
known performance training history, to achieve 95% 
proficiency under the current regimen of practice?   
 
We constructed a hypothetical training scenario, based 
upon the design of the CERI laboratory study 
described above, to help illustrate the potential utility 
of our model. In this scenario, five 40-minute missions 
were completed in session one of training, an 
additional three 40-minute missions were completed in 
a second session between weeks 10 and 14 later, and 
our predictions for 95% proficiency at a later date were 
then extrapolated from the performance history of the 
first eight missions in total. Timetables for predictions 
were based on learners engaging in five missions per 
day at a rate of five days of training per week. Model 
results are presented in Figure 10, where performance 

history baseline is shown in blue, and model 
predictions are shown in red. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10:  Notional prediction scenario 
 
In this hypothetical example, the learner would require 
practice of an additional 1,120 40-minute training 
missions to achieve the desired level of proficiency. 
This translates to an additional 28 weeks of training 
above and beyond the baseline training period 
presented in blue, at a rate of five missions a day, five 
times a week.  
 
This model is also equipped with the ability to make 
predictions for future performance using different 
specified regimens of practice, spaced apart at any 
length of time. Thus, if a learner takes two months 
away from training for instance, the model would be 
able to estimate how much knowledge had decayed 
over that period of time and make predictions for how 
much additional training would be required to achieve 
proficiency. This model therefore, has the potential to 
be a valuable predictive tool, even when training 
regimen is inconsistently spaced temporally or when 
extended breaks are taken. 
 
Potential Prescriptive Utility in the Warfighter 
Domain 
 
Also of great interest to the military, educators, and 
learners alike, is the development of a tool with the 
ability to prescribe optimal training regimens and 
maximize learning and retention gains. Our modeling 
tool has a potential prescriptive ability to assess and 
compare training schedules so that knowledge and skill 
acquisition will be more effective, and memory traces 
will be more durable over time.  
 
Tapping into the history of empirical findings in the 
domain of learning and memory, it is clear that 
practices spaced further apart result in better retention 
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than those spaced closer together, so this modeling tool 
may be used to predict and assess how effective each 
training repetition will be (as a function of memory 
trace activation) and to help optimize the spacing of 
training opportunities to result in larger learning gains.  
 
Our predictive model carries the potential to function 
in these kinds of prescriptive capacities by means of 
hypothetical comparisons across learning opportunities 
spaced at varying points in time. Logistically, it can 
also help determine whether or not training 
expectations for achieving proficiency are feasible to 
accomplish within the specified boundaries of time; 
and if they are not, it may help inform trainers and 
educators as to what a more reasonable timetable 
would be. Take for example the following situation: 
How much training must an individual warfighter 
receive to be mission-ready (95% proficiency) by a 
specified deployment date four weeks away?  Four 
months away?  
 
We constructed a hypothetical training scenario, based 
upon the training design of the CERI laboratory study 
described in the preceding example, to help illustrate 
the potential prescriptive utility of our model. Again, 
we baselined the model parameters from the first eight 
missions of training and made predictions for the 
amount of training required to achieve 95% proficiency 
by each deployment date.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11:  Notional prescription scenario – 
deployment date four weeks away 
 
For the deployment scenario set four weeks away, this 
hypothetical warfighter would require approximately 
120 40-minute practice missions to be completed each 
of the four weeks, to achieve mission-readiness (95% 
proficient) by that deadline (see Figure 11).  This is of 
course an entirely unreasonable training expectation 
since it would require 24 training missions to be 

completed each day, and would barely allow any time 
at all for sleeping or eating.  However, this is useful 
information, since the model may help point out when 
deployment dates are too early for warfighters to attain 
high enough levels of proficiency or to achieve high 
enough degrees of success. If there is no flexibility in 
deployment dates, this model may provide a reality 
check regarding expectations for readiness at the 
beginning of the deployment.  
 
For the deployment scenario set four months away, this 
hypothetical warfighter would now require a more 
reasonable (but still aggressive) training regimen. The 
model calls for approximately 110 40-minute practice 
missions to be completed each of the four months, to 
achieve mission-readiness (95% proficient) by that 
deadline (see Figure 12).   That’s approximately five 
training missions each day, five days each week - a far 
more reasonable expectation than in the previous 
scenario.  
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Figure 12:  Notional prescription scenario – 
deployment date four months away 
 
Also of interest with these deployment scenarios is the 
fact that training spaced further apart requires less 
overall training for the learner to actually achieve 
proficiency. There is a forty mission difference 
between the scenarios because learning gains are 
greater when training is distributed rather than massed. 
This fits nicely with well-established empirical data of 
human performance and shows the utility of the model 
for prescriptive and comparative purposes.  
 

CONCLUSIONS AND FUTURE DIRECTIONS 
 

We are enthusiastic regarding the potential uses for this 
type of model, particularly in the military domain. Use 
of this type of model can not only help determine when 
a warfighter has become proficient in a skill, but can 
also help streamline training to optimize learning as a 
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whole. As these are initial tests of the model, additional 
analyses must be completed to further refine and 
validate the model.  However, we are encouraged by 
the preliminary results and are hopeful we will have 
the opportunity to further investigate the model’s 
strengths, limitations, and eventual uses. 
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